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Abstract

A decision theoretic approach is followed in selecting the best of k Pareto
populations taking into account the cost of sampling and penalties for wrong

decisions. Minimax sample sizes are determined under various types of penalty

functions.
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minimax criterion, selection problem.
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._ SELECTING THE BEST POPULATION : A DECISION THEQRETIC APPROACH : THE CASE OF

‘f PARETO DISTRIBUTION

hl N. DAILAMI, Department of Probability and Statistics, The University, é*'
Sheffield S3 7RH, U.K., T

éﬁ K. SUBRAMANYAM, Department of Mathematics and Statistics, University of ;Ei;

Pittsburgh, Pittsburgh, PA 15260, U.S.A., e

and

M. Bhaskara Rao, Department of Probability and Statistics, The University,
Sheffield S3 7RH, U.K.

1. Introduction

"\ The main ideas in selecting the best populations meeting some prescribed

optimaljty criterion have been mooted originally by Bechchofer (1954) and

Gupta (1956) and the subject has gone from strength to strength by several

contributions by several statisticians over the last three decades. In this ;jfﬂ
paper, the selection problem is tackled from a decision theoretic point of view. E;f&
In selecting the best population, we take into account the cost of sampling ;i?f
and the penalties for taking a wrong decision. This kind of approach has ﬁ$§~

been promulgated by Somerville (1954) and Ofosu (1972). We are basically
interested in selecting the best Pareto population following the lead given
by Somerville (1954fjand Ofosu (1972f. The Pareto probability model has been
found useful in a wide variety of contexts. Pareto (1927) proposed this model

to study the distribution of incomes in various societies for comparison. In r‘A
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medical circles, this has been used as a model for the remission rate of
discharged psyciatric patients (See Fox and Kraemer (1971).)as a survival
model for cardiac patients waiting for a heart transplant operation.(See
Wingo (1979).). In the context of economics and marketing, this has been

used as a model for the distribution of property values, business mortality,
migration of workers, size of cities and firms, and consumer prices. See
Steindl (1965) and Koutrouvelis (1981). Ofosu (1972) has worked out minimax
sample sizes under a certain penalty function in the selection of the best
Gamma population. We feel that there is a gap in one of the steps involved

in the derivation of minimax sample sizes. In this paper, we consider four
different types of penalty functions fincluding

the one considered by Ofosu (1972). Under three of these penaity functions,

we derive the minimax sample sizes. The maximum of the resultant loss functions

is explicitly derived overcoming the difficulty faced by Ofosu (1972). We

will elaborate on this at the appropriate juncture.

2. General formulation

In this section, we present general ideas in selecting the best
poulation from a decision theoretic point of view. In the next section,

we specialize in the Pareto distribution.

There are k populations Tys Tos ttt s M under study. Let
Xi denote an observation selected at random from the i-th population L
if=1,2,-+-,k. The probability law governing the generation of Xi's is

described by a probability density function f(-;ei) which depends on an
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unknown parameter Tis i=1,2,-+-,k. We assume that the functional form of
f 1is completely specified and it is the same for all the populations. The
only unknown quantity that enters the density function is ei and the set
of all possible configurations (el,ez,---,ek) is denoted by © . We declare
a population to be the best if its 6-value is the largest. If two or more
-values are equal and largest, we adopt a well defined convention in
declaring one of the corresponding populations to be the best. One such
commonly adopted convention is the following. If ei and ej are equal
and the largest, the population " is declared to be the best if j > i.
Conventions are needed only in the calculation of probabilities of certain
events in the selection problem. In reality, if 85 and ej are equal and

the largest, we could regard both the populations s and " to be the

best.

One could also define ‘the best population' to be the one
whose g-value is the least. The treatment of the selection problem within
the purview of this definition is analogous to the one we are going to

develop for the above definition.

A selection problem basically consists of two components.

(i) Draw a random sample of size ny from population T i=1,2,°0¢,k,

(ii) Develop a statistical procedure R built on Np Ny +oene dng
observations which, once the data are given, clearly, declares the best

population.

Introducing a good statistical procedure R to select the best

population is not a difficult job for many probability models. The following

. e e - . oo e e - N . . .
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is a natural procedure. Let Yl’ YZ’ cee L Y be n independent identically

n
distributed random variables with common probability der ity function f(.;6),
o unknown. Choose, if possible, a minimum variance unbiased estimator of ¢
based on Yl’ YZ’ ces Yk. If minimum variance unbiased estimator of ¢

does not exist, choose some decent estimator of & based on Yl’ Y2, see Yk
which has good asymptotic properties. Let us denote the chosen estimator by
T(Yl,YZ,'°',Yk). (In the Pareto case we are going to discuss, a natural

estimator of 6 presents itself.)

Statistical Procedure R

Suppose the data from the k populations are arranged as follows.

Population Il IZ ceee IE
X11 Xo1 = X
X12 Xag *oor X2
Data
X x * 0 0e X
1n1 2n2 knk

. = T :q 9A ’Ooo’x, , i = . ’-o.’k.
Let TJ (XJI XJ2 Jnj) j=1,2

Population s is the best if Ti > Tj for every j # i.

For simplicity, here, we assume that each Ti has a continuous probability
density function. If two or more Ti values are equal and the largest, the
population with largest suffix i is declared to be the best (our convention).

0f course, this event occurs with probability zero.
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The heart of the matter in selection problems is the choice of
the sample sizes Nys Mys o0e 5 N We need to introduce an optimality

criterion so that the sample sizes chosen are optimal according to the

N AARFONSCW B

criterion proposed. To simplify the problem, we decide in advance that we

s

)

intend to select samples of the same size form each population. Let

. Following Somerville (1954) and Ofosu (1972), we proceed as
follows. We adopt the statistical procedure R described above to select

the best population. No statistical procedure is infallible. It might

declare a wrong population to be the best. Let el, Bps =00 s By

be a configuration of the populations Tys  Tos tot s M respectively.
Let (1) £ 8(2) £ *** 2 8y be the arrangement of 8,, 8,5 =c- , 8
in increasing order of magnitude. Let L7 be the population whose parameter
value is e(j) » J = 1,2,000,k. If two oerore p~-values coincide, by the
convention mentioned earlier, the corresponding ij's are taken to be in
increasing order of magnitude. il’ 12, voe ik is merely a permutation
of 1,2,-++,k which depends on the configuration (el,ez,---,ek) in  o.

) correspond to the population

Let the statistic Ti. = T(xijl’XiJZ""’xi.n

LI j=1,2,.4e,k. According to the configuration (91.92,---,ek) in o,
J
m, s the best population. Under the given configuration (el,ez,---,ek) in

k
0, the statistical procedure R can commit k-1 different types of wrong

decisions. The 1ist is given below.

Wrong decision : Type j : 5 is declared to be the best.
J

(J = 1’2’...’k-1)

Correct decision : s is declared to be the best.
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In order to calculate the probabilities of the above events, we

assume that the probability density function of the statistic T =

T(YI’YZ""’Yn)’ where Yis Yo, eoe , ¥, are independent identically

distributed random variables with common probability density function
f(.3;8), is of the continuous type. Under this assumption, the random
variables Tl’ TZ’ see Tk are distinct with probability one under every
configuration (61,62,°--,6k) in o. Let q(-;8;n) be the probability
density function of T = T(YI’YZ""’Yk) and G(-;e3;n) its distribution

function. Let

Pj(el,ez,---,ek;n) Prob(R takes a wrong decision of Type j)

= Prel’SZ""’ek(Tij > Tir for every r # j)
« k
= _i rgl G(x;e(r);n) g(x;e(j);n) dx,
r#j

j = 1’2"",k'1’

and
Pk(el,ez,---,ek;n) = Prob(R takes the correct decision)
= Pr (T, > T. forr =1,2,--+,k-1)
81280008 Ty i ’
w kel
= f T  G(x38,.y3n) g(x;8,,y3n) dx .
e (r) (k)

Cost of sampling

The cost of selecting a random sample of size n from each population

has to be taken into account in the determination of an optimal sample size n.

We assume that the cost function to be of the form




T N TR RN N T T T T EIRAA N YOI 0/ e A i S AN NP R N Bt e 0 e o d il A b aul aul ) X Sed bk Al Sl G 80 h S ANE or e S AR e ard e

- W TR

<7-

P KL L 1700 ]

= d -
Cn) = c  +keny n= 1,2, 000,

E where ¢ & and d are nonnegative constants. < and ¢, are measured

> in the same units, and Co represents fixed administrative costs involved
in setting up a sampling plan. If d =1, the cost of taking additional
samples rises linearly with n. If d< 1, the rise in the cost does not
increase relatively with increasing sample sizes. If d >1, it will

become more and more expensive to take additional samples.

Penalty for wrong decisions

Let wj(el,ez,"',ek) denote penalty for taking a wrong decision
of Type j which is measured in the same units as those of < and q for
j=1,2,...,k-1 and for every configuration (91,92,...,9k) in o .(In the

next section, we discuss several choices of penalty functions.)

o Loss function
For each configuration (91,92,...,9k) in @, and for each
sample size n , 1, we assume that the loss function L to have the

following structure.

L(el,ez,...,ek;n) Cost of sampling + Average penalty for wrong

decisions
k-1
= C(n) + .2 (Penalty for wrong decision of Type j)x
2 = Pr(R commits wrong decision of Type j)
k-1
y = C(ﬂ) + J=1 wj(el:ezs-~'9ek) Pj(el,ez, ...,ek;n) .

Decision theoretic formulation

. We now identify the state space to be g and the action space to
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be N = {1,2,3, «+- } , the set of all possible sample sizes, and the loss f#

function L is the one described above. It is defined on the cartesian product fﬁ?

space © x N. The minimax sample size n minimizes A iEj
£

max L(§;m) T

"
80
over all m in N. In the next section, we specialize the case of Pareto

distribution. P

3. On selecting the best Pareto population

The probability density function of a Pareto distribution is given by E;i'
f(x;o;m) = on®/x®*1 | m <X <o, g
where m> 0 and & > 0 are the parameters of the model. We recall some T
k
distribution theory concerning this model. For details, see Johnson and Kotz S
(1970). Let X;,X,,-=+,X be independent identically distributed random —
variables with common probability density function f given above. Let ;f;j
m = min X, .”}f
1<i<n 4
and o
- n 1/n,2yy-1 E—H
8 = (log((m Xi) /m)) . o
i=1 T
Then m and ¢ are jointly sufficient for m and 8. Further, ]
2n6/6 M 42 .
X2n® ~

where Xgn chi-square distribution with 2n degrees of freedom.

The problem to which we address ourselves in this section is the {"]

following. The j-th population " has Pareto distribution with parameters fiﬁj
!
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mj and ej, both unknown, j = 1,2,+++,k. We want to select that population

TS for which ej is the largest. As expostulated earlier, we have to

strike at a decent estimator T of 6 based on n independent observations
from a Pareto.distribution with parameters m and @& in order to describe
the statistical procedure R in the selection of the best population. From

the deliberations carried out above, a clear choice emerges. Let

( r X1')1/n -1
i=1

min X.

l<i<n 1

T(XI’XZ’...’XH) = 8 = 109 (3.1)

The parameter space © in this case identifies as the positive orthant of

the k-dimensional euclidean space, i.e.,

e = {(81,62,---,ek) 3 85 > 0 for all i} .

Statistical Procedure R

Let le’XjZ""’xjn be a random sample of size n from

population ™5 J=1,2,--°,k.

T(X o KigaeesXs ) = Ty > T o= T(X

i1*%42 i j j1° e aXsn)

j2’ Jn

for all J # 1,

where the statistic T s given by the formula (3.1).

The error probabilities in this case work out as follows.
o Kk
r1 (1-6
r=1
r#j

pj(elrezs"'aek;n) zn(e

o

(3)

(0 )y g, () dx,  (3.2)

R
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for j =1,2,++¢,k=-1, where 92n(') is the probability density
function of a chi-square distribution with 2n degrees of freedom and

GZn(') its distribution function.

The probability that R takes the correct decision is given by

w k-1 C]
Plogsogeeesion = 11 (1-e2n(e§—:; ) gy lx) dx . (3.3)

At this juncture, we state some inequalities concerning the

above probability for future use.

Lemma 3.1 For every (61,62,---.ek) in o,

k-1
pk(elsezs"':ek;n) 2 6 (1 - Gzn(x)) QZH(X) dx,

and equality holds in the above if e1 =8y = ocee = 8 -

Proof. Obvious.

Lemma 3.2 Let (87,8,5°++,8,) € 0 . Write 8(k) = ™ (k-1)* (Obviously, r > 1.)
Then
pk(eloezn"'sek;n) : 6 (1 - Gzn(x/r))k-l gzn(x) dx’

and equality in the above holds if ¢, =6, =--- =9, _, and 6 =re, ;.

Proof. Easy to check.

Now, the loss function L takes the following form. For

(81+855°¢+,8,) in o and n> 1,

k-l * k e(r)
L(QI’BZ"'.’ek;n) = C(N) + jzl wj(el’GZ’...’ek) 6 rEl(l - Gzn(€z5; X)) 92n(x)
r#j

-~
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In order to find the minimax sample size, we need to maximize

*
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the above loss function over © for every fixed n > 1. We consider four

,Vl.'.l‘

T ll "
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different types of penalty functions wj's and examine the behaviour of

the loss function under each one of these penalty functions. o

Penalty function of Type 1 : Constant penalty.

Let wj(91’92’°"’ek) = ¢, a constant for every (el.ez,---.ek) L .
in o and j =1,2,--¢,k-1. (For simplicity, take ¢ = 1.) What. this -
means is that whatever may be the type of wrong decision, the same amount _i
of penalty is imposed. In this case, the loss function L simplifies to i;i

k1 =

L(91a92""'9k;n) = C(n) + E pj(elaezi"'oek;n) ~::::
=1 R

. [l

= C(n) +1- pk(elvez:""ek;n) E“"“

for every (61,62.--°,ek) in @ and n > 1. The maximization of L
over @ can easily be worked out for every fixed n > 1. For this, let

us introduce the following subset of 0.

0. = {(el,ez,---.ek) €0 ;8 =08,= 0= 0} 3

Proposition 3.3 For every n > 1,

max L(¥;n) = max L(8;n) = (k-1)/k.
n, v :
8e0d eeeo u

Proof. First, we note that if (91.92,---,ek) € 9y then Tl’ T2’ ve Tk

P
.I.l".l’l o,
LPE2ALSS

s
s

are independently identically distributed. Consequently, pj(el,ez,---,ek;n)

e

= 1/k for every j = 1,2,+¢+,k. Therefore,




b
j
]
]
§
4
4
4
o
4
4
4
4
4
9
4
A
3
4
’
4
P
A
4
§
3
4
5
;
]
]
4
¢
4
]
4
]
4
4
y

........................

L. T PP
v N
o .-‘3'.- DA

-12-

-
é

r
P

., ..'.'l.‘
ettty

k-1
Jil pj(el’GZ’...’ek;n) = (k"l)/k ;

25

for every (el,ez,---,ek) in S Also, N

k-1 N

max I p.(g;n) max (1 - p,(8;n))
n j=1 J k «
6e@ a’ee e

[}

= 1-min p (&;n) igﬁ
n N

8e0 AR
11 (- G gyl e, T
by Lemma 3.1, E:i'

1- pk(el’el""'el‘") ;j:

1 - (1/k) = (k-1)/k.

This completes the proof. i;v

As a consequence of the above proposition, we have the o
following results. -
Theorem 3.4 For every fixed n > 1,

max L(§3n) = C(n) + (k-1)/k. =
deo S

Corollary 3.5 Under the Penalty function of Type 1, the minimax sample E:;

size is n = 1.

Penalty function of Type 2 : Penalty function which takes into account iii
differences between the best and the second

best populations.

‘-
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It is natural to impose penalties for wrong decisions based
on the magnitude of the parameters involved. A critical point in the
selection problem is the times at which the second best population
passes as the best population. If (el,ez,---.ek) in o 1is a configuration
of the parameters of the k populations, the penalty for declaring
the second best population as the best population should naturally

depend on e(k-l) and e(k). Some natural penalty functions are

8 <]

(k) - (k)
W (9 38,597 ,8 ) = = ] ’
k-1'9192 k 2 5 (k1) or €2 109 B (k1)

where Cy > 0 is measured in the same units as those of < and cq-
There are other types of wrong decisions too. We could insist that
the penalty for other types of wrong decisions should be atleast
W 1(81s80000,8, ). Let

wj(el'e‘Z’“"ek) = dJ Nk_l(elyezr"'aek)s
for j = 1,2,++,k-2, where dl’ d2’ cee dk-2 are constants exceeding
unity. It is natural to take d, >d, > --- > d, , embodying the

principle that the more extreme the type of wrong decision the more

severe the penalty is. In what follows, we take

W, _1(6448,,4+,8,) = c, log "(k)
k=112 k 2 e(k-l)
The loss function then becomes
k-1 e(k
L(814855%72,8,50) = C(n) + jil c, dj(log gzzjfx) pj(91'92""'ek;")

e e
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Our next objective is to maximize the loss function L over ©
22 for every fixed n > 1. We were unable to maximize the loss function explicitly
N in its full generality stated above. The following results give explicitly
) the maximum of this loss function over © in the case d1 = d2 = ees = dk-2’
- : Before stating the relevant results, &i;ﬁ
- we introduce the following subset of o. ;j:?
- o
. 0 = (87485070048, ) € 0 5 6y =8, = +c- =6, , and 6 =re , I;.:]
9 for some r > 1} ol
- f‘.' =]
Lemma 3.6 For every fixed n > 1, let L
k-1 0 3
p = max I (log E—LEI-) p.(el.ez.-°-,ek;n) s
j=1 (k-1) I
where the maximum is taken over all (91’92"°"ek) in o,
and -
k-1 ez ) ( ) SR
qQ = max z (109 )p oy ,e*,---,ei;n ’ "
j=1 ezk 1) 2 - Dot
where the maximum is taken over all (e},05,---,6%) in oy, -
Then
p = q = max (Tog r) (k=1) 1 (1= Gy (N % (1 = Gyplxr)) gp(x) dx 173
. r>1 0 \1
= - (1 BEd
3 = max (log r) (1 -7 (1 - Gyplx/r))'™ gy (x) dx). 0
g r21 0 e
'-i S
A Proof. Since elc; @, q<p. Wenowprove p < q. For this, it suffices *;\ﬂ
.. -
1. e T e ORI SO A T e T T
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to show the following. Given (el,ez,---.ek) in 0, there exists

(e{’e*""aei) in 91 such that

k£1 (]Og ) (k) ) P (eloezt"'9ek;n) < k; (109 ezk) ) P (91:32:""6E;n)-
j=1 (k-1) j= ?

Let e‘f = 05 = ecse = e:_l = B(k_l) and 9; = e(k)o ObViOUS]y, 9; = re;_l

for some r > 1 and (e},83,°+,6}) e 0;. Therefore,

g e‘ ) k5 )
z (log .——— p 843855 °°,0, 3N
k-1
jil (log r) pj(el,ez,---,ek;n)

= (logr) (1 - pk(el,ez.---,ek;n))

ia

(log r) (1 - : (1 - GZn(x/r))k'l gpn(X) dx), by Lenma 3.2

(Tog r) (1 - p,(8%:0%,e++,85in))

k-1
(]Og T) JEI Ps (91:923"':eksn)

k-1 (k)

; (109 —{_) p'(e*:a*.“';e*;") .
j=1 it k

This proves that p < q and hence p = q. Incidentally, if e{ = 65 = ees =

. l/\
n

ox_, and eF =rof , for some r > 1, then for every j = 1,2,++7,k-1,

we have

8

k 1 z ) ( ) d
p§1 (1 - Gy °?J X)) gpplx) dx

p#j

P (61’92’.."ek’n)

[ B

'’

l‘l
.
Lol

2 L Lc M
-, 2]
. " (4 « 7
PN A

(1 (x))k -2 (1 -6, (xr)) 92 x) dx.

.
R
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. Consequently, F ,.'_
- h\.\.‘
-:: k-1 8;’ -'_“:-:
~; mx I (log zz—=) P (eF.0%.e-.68in) , GO
< j=1 k-1 J R
o !'\'
) where the maximum is taken over all (e{.e;.---,et) in 91> E%{.
: _ ! > k-2
= ma; (log r) (k-1) s (1 - GZn(x)) (1- GZn(xr)) an(x) dx
r> 0
~ = max (log r) (1 - P (6,8,0+-,8,r8;n))
r>1
; = max (log r) (1 - ; (1 - G, (x/r-))k'1 95 (x) dx).
r21 0 n n
This completes the proof.
As a consequence of this lemma, we obtain the following result.
Theorem 3.7 For every n > 1, ?;3i
-.'u.::\.
max L(§;n) = max L(§;n) o
n n i -3
8e@ 9201 . '
2 20N
| = C(n) + ¢, max (log r)(k-1) 1 (1 = Gy (X)L = Gy (xr)) gy (x) dx 5
R r>1 0 SO
= C(n) + c, max (logr) (1 - s (1- GZn(x/r))k'1 92n(x) dx). ;' N
r>1 0 .
: ..._!
Theorem 3.7 reduces the problem of ma<imizing L over o to the F;;
: problem of maximizing the following function Y

flr) = (logr) (1= /(1 - By (1/P)) € g, (%) dx)

over all r > 1. In view of Theorem 3.7, we modify the notation cf the loss
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5

function from L(el.ez,---.ek;n) to

‘E L(rin) = c(n) + ¢, f(r),
h]
o r>1 and n> 1.
fz There are two stages invoived in finding the minimax sample size.
i Stage 1. For every fixed n > 1, maximize L(r;n) over all r > 1. This
. is equivalent to maximizing f(r) over all r > 1. let r
- be the value at which f(r) is maximum.
. Stage 2 Then find the minimum of L(rn k;n) over all n > 1. The value of
% n at which L(rn k;n) is minimum is the required minimax sample
3 ’
~ size.
<& Maximization of f(r) over all r > 1 1s not easy analytically.
- We observe that f(.) has the following properties. (i) (1) = 0 (obvious).
S‘ (i1) lim f(r) = 0. In order to understand the function f(-), we used a
[~ raeo

numerical quadrature formula to evaluate f(r) for an extensive range of
:: values of r and k. A sample of these findings is reproduced below.
; Table 1 : Tabulation of values of Tnk? the value at which f(+) is maximum
2 s
D Sample No. of populations, k
- size
- 2 2.3 2.5 2.8 2.9
2 3 1.9 2.1 2.2 2.3
e 4 1.7 1.9 2.0 2.0
% 5 1.6 1.7 1.8 1.9
E 6 1.6 1.7 1.7 1.8
= 7 1.5 1.6 1.6 1.7
’ 8 1.5 1.5 1.6 1.6
b 9 1.4 1.5 1.5 1.6

10 1.4 1.5 1.5 1.5 ~—
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The following information emerges from these studies. (iii) For
every fixed n and k, f(-) seems to be unimodal. (iv) For every fixed Kk,

r <

decreases with increasing n, i.e., if m > n. (This

n,k "m,k ",k

property useful when determining minimax sample sizes.)

Ofosu (1972), in his study of selecting the best of k Gamma

populations, suggested two methods of determining minimax sample sizes.

Method 1 Choose a certain range of plausible values of sample size in which

we hope the minimax sample size lies. Find n K for every n

in the range selected. Evaluate L(rn k;n) for every n in the

range. Then that value of n for which L(rn k;n) is minimum
*

is the desired minimax sample size.

This method involved a lot of computer time. Determination of
plausible minimax values of n involves an extensive tabulation of L{r;n)'s.
Further, locating rn,k's is a time consuming process. The second method
we are going to describe now is a slight modification of another method

suggested by Ofosu (1972). This method uses the property (iv) mentioned above.

Method 2 k is fixed, Find Fo k* the point at which f(-) is maximum
»

when the sample size is 2. Evaluate L(r;n) for r =1.0,1.1, 1.2,

. rZ,k and n = 2,3,4, ¢+ ,20. These values are tabulated
in the two-way grid, with rows corresponding to r and columns
corresponding to n. For each column in the two-way grid, locate
the maximum. Under each column representing a particular sample
size n, we know that the maximum of L(r;n) occurs at some value

of r between 1.0 and o g See property (iv) above. These
. ]

maxima exhibit a decreasing trend to start with and then rise

steadily. We locate the column for which the maximum entry is
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minimum. The corresponding sample size is taken to be the minimax

sample size. If these column maximums exhibit a downward trend over

the entire sample range from 2 to 20 considered, then the

! minimax sample size is > 20. In this case, we need to extend the

I range of values of n. We may need to use asymptotic expressions
for f(.) for large values of n. This aspect is discussed in the

I last section.

We found that, in practice, Method 2 works faster than Method 1. By

.7 G "

way of illustration, we have adopted Method 2 to find the minimax sample
size for

: k = 2,3,4,5;
l ¢y = 0, ¢y = 1 and d = 1; and
; c, = 1000.
l: The loss function L is given by
! .
- L(rsn) = kn + 1000 (Tog r)(1 = 7 (1 - 6, (x/e))*"! gy (x) ax),
,‘ 0
IS r>1 and n > 1. A sample two-way grid is given on the
! following page for k = 4. From the computations performed using Method 2,
. the following information is obtained.
E Table 2 : Minimax sample sizes under Penalty function of Type 2
' .
g No. of populations Minimax sample size Minimax loss
: I3 n
.
. 2 15 92.54
| 3 16 142.53

4 18 183.83

5 14 218.97

:
i




T rwyer

vy $s01

1y « 25v0338tndod 40 JeQUnN

TUOTINGTIINTY 0IBIey

1¢ o1qed

$S°90%  00°S®S  €9°COL  SUCOL  SO°YOL  PBOL  HD'SOL  £0°SOL  SO°/OL  ObCOSL  SZ°PEL  99°9EL  20°SOZ  1S°VIZ  IC°LZZ  00°WYZ  ££°0LZ  19°ZiE 1S tec "M
T8 99°LL 9T°ML WD'LL OTUO9 #L°SY SEED EL°I9 0170 0Ly 98749 €0°WZ  SP°HD HE°00L  €0°¥ZL  OL°9SL  TU'B0Z  OL°Z8Z ey eet ot
09°\8  SZ°9L  L0°SL  v0"ZL  Z¥UBY (2°¢9  9L°S9  CL°S9  (9°S9 00°¢9 11%¢ 74 £€°6L  99°08 GV (0L SEBULEL  68°9SL 90912 Z0'eez Z9°Osc st
€C°Z9  90°8f €0°9L  OC°EL  08°0/ 1269  S1'9e9  S0'99 263 6O 2 47 9E°SO  9S°/8  9Z°SLE  9C°ONL  (S5°SIL  SLPZZ €O°CEZ 1S i8¢ ) 4
ZZUEO BLC00  BETLL 9B°WL  MDUEL.  (9°VW L TOMEL O WMRL ML 80°co TL°Z6  12°SOL  99°CIL  EZ°BKL  OE°YOL  SS°ZCZ  19°96Z  Se°ise e
9y 99°10 GL°BL  CLlL  09°SZ  LL°vL  09°  SB°S¢  sSCeL BBZ0 10°ee 1£°86  6S°CLL  B9°2CL  ZS'OSL  EECSL  SL°DMZ  H°COC 6 06C L )¢ 4
91°98  99°CE  9S°L@  98°8¢ €89/  99°9L €E°BL  BLUI9  $5°v0  19°EBR  9v°E SLUO0L  TLTTTL MLTIYL ELCESL UETZOZ  LPTLYT SETLOE SvUeRt s°2
0§08 1999 SL°VE  €9°CR ZLCe  ZSCO  09°Y0  Op/9  29°18 (9°¢8 80°90F  £¥°ZLb  9S°ZCEL  OC°ZSt  SB°LZL  MLTLIZ  LL°KST  (E°0IC  92°SeC e
ZuCis  S0°08  18°90  9E°09  15°90 589 19°tB  SB°¥8  SU°S8  €9°90F  ZCSLE ¥8°/Zb 0°CHL $LTZIL LEC(OL $9°SLZ  BL°09Z  9Z°ZIC  99°08¢ €z
€L°S6  90°PB  1E°P8  (C°8  BL°SB  08°98  99°88  ¥/°COL ZE°BOL €91l €CT9ZL  £S°OEL  L0°PSt  KECELL  B¥TLBL  #5°L2Z  02°S9Z e Seeee 34
1E°ZOL  91°10F  €2°L0L  €B°L0L  LH°COL  BZ°SOL  ZZ°SOL  OB°CLL  0°DZL @9°¢ZL  ©L°(CL  (0°05F €Z°S8L  CO'EUL  09°90Z 0S°MEZ  BU'ESZ  B9°IIC  €CU9%C e
SL°BDL  9Z°8OL  18°80F  €Z°tLb  Z6°€LL  92°91L  9Z°DZL  Ob°SZL  0B°1EL  SB°BEL  EUDCEML  99TIBL  #C°9/L BL'CBL GL°WIZ 60TONMZ  LL°OLZ  O¥°90C  Z0°9SC [ ¢4
$£°081  SC°BLL  $S°OZL  BC 2ZL  98°¥ZL  SCUOZL  £9°26L  MO0°OCL  19°yhL  S5°254  £D°ZOL  BE°CLL  19°90F  69°202  (¥°IZZ  IL°CPT  WYCOLZ  BLTOE vicCeE s
9°0EL  ZSUBES  ZISCEL  OCSEL  MLRCL  DZ°LYE  L0°BYS  SECISE  99°/SL 90°S9  BOCELL ZO'WEL  Z8°S8L  OL°BOZ  SE°SZZ  GO°YIZ  #Z°(BZ  00°YEZ 82U ”e
SLUOPL  OVCSHL  2Z°4L GrC8KL  S2°2SL  S9°SSL  O/°BSL  ©v°HBL  B0°0Z  05°BZL  B0°YEL  9£°Z6F  69°Z0Z C4°WIZ  LE°/2Z  09°Z¥T  O¥°OSZ  LL°I8T  I8°(0C 'y}
SL°8SL  £C°09L  96°19L  9£°COL  €L°H9L  C€B°99L  HZ°ZsL B0°9LL  ¥5°09F  99°SeL  IS°LBL  OZ°96L  Z8°SOZ  AS°PIZ  8p°¥ZT  ZBSEZ  9Z°G¥Z  OL°S9Z  95°vEZ [ )}
LS°CLV  LZ°WEY  OLUSLL  £Z°94b WL ZSUBLL  S9CLEL  WLCKAL  S0°ZOL  OVO6L  S2°¥BL  99°96L 69°COZ  SPCEOZ  ¥0°SLZ  93€2Z  LS°I,T  1T'ERZ  EV°9S2Z st
92080 £B°COL  CO'EEL - SO'COL  SO°POL  O¥HOL  HO°SOL  £9°SOL 987991  0Z°00F  S6°6UL - 18°LEL  £Z¥SL  Q0°/BL  Ly°00Z  9E°¥OZ 9L°60Z 80°SIZ  €9°z2Z ”e
" 95°900 0 .°SEL  SS°COL  OL°ZOL  08°09L C¢°BLL 99°0¢h 0272 99°9Lt  02°OLL  Z9°SL% €E°SLL BLUSZL BZUSLE 09T/ CERTRLL 98l OSTSAL WECZOM (3}
28°eb BECLLL S8°09L  €B°SSL  92°C9L  29°09F  £O°OSL  BM'SSL  DO°ESH - £S°0SE  1ZOM  ZE°SKL  RLCRL  €9°LWL  (9°GEL  (9°(EL  OZ°OEL  BE°WEL  (LUwel t )
o0yt  08°9CL  CL°CEl 00°GZ4 - ¥1°ZZL  0S°OLL  £8°¥iL  92°LEL  99°/DL  LO0°KOL  LS°DOL  (8°98  SV°EE  (68°6F  ¥S°O0  SMEQ SesL W (341
‘Joow _00°9¢ _00°2¢  00°99 _ 00°»9  00°09 00°SS  00°z5  00°9y  00°bb 00°0y 00°9¢ 00'ZC D0O°OZ 00°®Z 0O'OZ 0O°SL  DO°ZL  OO°® 0t
o2z ] [ 1) &0 13 st 113 1} ] " o 8 ] ¢ ] s » (3 z 3
o - 0 N < 1} (4%07) 00O o Uy = (U°3)1 = 8807 P




»
E“q ~.
R o
! Penalty function of Type 3 : Penalties which take into account differences !:_:_'
% -
= between the best and the rest of the populations.
=
Suppose the statistical procedure R described above commits the
"\A
:‘_i mistake of type j {j = 1,2,---,k-1). It is natural to insist that the penalty
for this wrong decision should depend on the magnitudes of e(j) and e(k).
. Ofosu (1972), accordingly introduced the following penalty functions.
4 Wj(elgez."',ek) = aJ- 109 G(k)/e(j)

for all (el,ez,---.ek) in o and j =1,2,¢¢+,k-1, where ai's are

positive constants measured in the same units as those of N and ¢ - The

loss function L then works out to be

. k-1
L(el,ez,o--,ek;n) = C(n) + jil aj(Iog e(k)/e(j)) pj(el,ez.-o-,ek;n)
for all (87,8,,°++,0,) in o and n > 1. Ofosu (1972) asserts that
max L(8;n) = max L(8;5n)

- 8B 6561
i that
e for every n > 1 andAthis equality can be verified numerically only! He has
3
o no analytical proof of this equality. Then he went on to obtain the minimax ‘
‘ sample size for selecting the best of k Gamma populations. We also do not J
" _ 2]
e have any analytical proof of this equality.We abandon the project of working
w =
o with penalty functions of this type. ""i
'l =
- f.-‘_;'l
E Penalty function of Type 4 : Penalties are imposed only when the ratio of ;-;}_-;Z
= E
: the parameter values of the best population and -—1‘
- the rest exceed a prescribed number. ‘-_Zf-j:‘
. £
''''''''''''''''' P T e o Tt L FURE P LN ST At et Tt l ‘."l
e L e e e L i e siileel ol
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In this part, we are going to introduce :-3a: new, natural and special F
penalty function. Let 0 < § <1 be given., Let B1s Bps =+ 5 8 be a

configuration of the parameters of the k populations Ty Tos > Ty

respectively. Suppose the statistical procedure R declares s to be the

e

best for some j = 1,2,+.-,k-1. The parameter values associated with the best

. population =», and . are e(k) and e(. respectively. If the ratio

N ]k 1j J)

e(j)/e(k) (<1) of e(j) and e(k) is close to unity, we would not like

to be penalized for taking the wrong decision of accepting s to be the
, J
best population. On the other hand, if the ratio e(j)/e(k) is small, we

certainly wish to be penalized for accepting s to be the best. A line has Z*Qﬁ
J
to be drawn somewhere between the statements that the ratio e(j)/e(k) being

close to unity and that it is being small. The number & distinguishes these g.i‘
two statements and the choice of & is subjective. The discussion carried ﬁ}:H

out above can be embodied mathematically in the following way.

J
= 0 if e(j)/e(k) > §, G;?

wj(?l’ez,...,ek) = 3. if e(j)/e(k) <8,

for all (el,ez,---,ek) in © and j =1,2,°-+,k-1, where aj's are gf_

positive numbers measured 1in the same units as those of c0 and Cq- To
emphasize the gravity of the type of wrong decision taken, one may wish to
have a; > a, > <+ >a, ;. This chain of inequalities indicates that b

. the more extreme the type of wrong decision the more severe the penalty is. :ffr

We deal with only the case A T a, = eer a7 A, 3. We were unable to }ﬂiL

AN
obtain concrete results in the general case of these constants. Under this case, E;;;
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the loss function L works out as follows.

M

Let (87,8,,°+,8,) 1in @ be given. Let r be the largest index, ::5
if it exists, in {1,2,-+-,k-1} such that e(r)/e(k) < & . This implies éig
E
. i = LY . i = + LR
that 9(3)/e(k) <8 for j=1,2,--+,r and e(J)/e(k) >8& for j = r+i, o
r+2,+++,k. Then
r o
L(el'eza---,ek;n) = C(n) + a jzl pj(el,ez,---,ek;n). ?’;5

1f there is no index r satisfying the above, then i
L(61:85504=,8,5n) = C(n). k.
The index r, of course, depends on the configuration (61’92"°"9k) in o. ;i;
We now proceed to obtain the minimax sample size n  under the loss éfi
function given above. Towards this goal, we consider the following subset of o. ﬁl&
@2 = {<61362"")6k) e O N 81 = 62 S eees = er and 6r+1 = 6r+2 = :;~:-E
&~

.
.
.
"

9 = (1/6)er for some

r in {1,2,+++,k-1}}.

The following results help us to maximize the loss function L(8;n)

over all § ¢ o for every fixed n > 1.

:

Lemma 3.8 Let (91,92,---.9k) € © . Suppose there exists a largest index

-
14

r in {1,2,+++,k-1} such that e(r)/e(k) <8 . let

g'f = 95 = ses = e: and 9:+1 = 9:+2 = ese = e‘l: = (1/5)9:’

where e; = e(r). Then (ef.ea,-'-,e;) e 0, and

ST

...............
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3
| P (811850020, 3n) > p (67,835, ,8%5n)
E for every n > 1,
by
Proof. From the definition of o, , it is clear that (e{,e;,a--,eﬁ) € 0.
1f Observe that
. @ k-l e?.)
* Ak L.. Qs = -
P (8%:65s--<,0F;5n) ;o1 (1 Gy (535 X)) g,pp(x) dx
0 j=1 (k)
- 7 -6, ()" (1 -6, DN g (x) dx
0 2n 2n I2n :
°(i) °(i)
. Note that ——= < & for every i = 1,2,0+05r and ¢ < 1 for
> (k) (k)
" every 1 = r+l, r+2,..., k. Consequently,
- o k-1 8, .
- P (8y36,5046,30) = [ (1 -6 (-ill x)) g,.(x) dx :
: k'1°*72 k 0 j=1 2n e(k) 2n >
: :
. ® r B/, k 8. - }:
=7 o1(1-6, 69 1 (-6, (Ulx)) g, (x)d
7 0 =l 20°8 (k) jer+l 2078 () 2n
s r (16, () (-6, ()T g, (x) dx
-0 2n 2n I2n )

pk(e;,eg,---,e;;n).

This completes the proof.

Lemma 3.9 The following equality is true for every n > 1.

pax L(§;n) max L{;n).
6ed 9662
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Proof. Let p= max L(E;n) and q = fax L(8;n). Since 9,C€ 6, q < p.
€0 eeez

To prove the reverse inequality p < g, ‘it suffices to prove the following.

Given (el,ez,---,ek) in @ , there exists (e’l*.eg,---,e;) in o, such that
L(el’ezs"'tek;n) < L(e{,e§,°",6:;ﬂ).

I
Let (91.92,---,ek) in o be given. Case (i). ) > & for all j =1,2,0-,

k-1. Then L(Bl,ﬁz,-'-,ek;n) = C(n) + 0 = C(n) < L(e\i,gg,...’ez;n)

for any (ef,e;,---,e;) in 0,. Case (ii). There exists j in {1,2,++¢,k-1}
- =8 A4
% 0/
h such that B%L; <& . Let r be the largest index in {1,2,+<+,k-1} such

k

8

; (r) = = ee = = - - -
r that i 5 . Let e{ = eE = e = e: = e(r) and e;+1 = e:+2 = oes =

[

(]
——
3
g
+
]

[0 3 i

L(eltezt""ek;n)

k-1
C(n) + a j§1 pj(el.ez.---,ek;n)

IA

= C(n) + a(l - pk(el’ezo"'sek;n))

A

c(n) + afl - pk(e‘i’,e*z*.---,ei;n)), by Lemma 3.8

k-1
c(n) + a jil pj(e{,eg.-'-,e;;n)

L(ST)SEQ"',GE;").
This completes the proof.

The above lemma simplifies the problem of maximizing L(-;n) over ©

.......................................
.......................................
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3 to that of maximization of L(-;n) ‘over ez. We now solve the problem of f“;

3 maximization of L(-;n) over ©,. We partition 6, as follows. Let ::E::‘::

d e

) i
er = {(91'92,...,3!‘) € 92; 91 = 62 = cee = ej and ej+l = ej+2 . ‘_.,A.

-E"u\.]

for j = 1,2,e+,k-1. e

!-"‘>“

Lemma 3.10 The following statement is true. If (61,62,"~,9k) € sz, then s

: ° k 1

P (81,8,,00+,0,50) = s (1= 6, /6N (1 - ¢, NI g, (1) ax -
0 \

for 1= 1,2,0++,i and j = 1,2,+++,k-1. S

Proof. The above assertion follows directly from the definition of the ‘;;:.?;-
L ] - .~

probabilities p;'s and ezj s. :::_;_;

s

" Theorem 3.11 For every fixed n > 1, :}

% p k-1 Eﬁ

pax L(6m) = C(n) + a(l-sQ - GZn(Gx)) an(x) dx)

8e® 0 o

- cm + alk-D) £ (- ¢, /N -6, N5 g (1) dx.

0 2n 2n 2n Sy

Proof. The proof is carried out in the following two major steps. j‘_'.-_‘,

1°. 1In view of Lemma 3.9, we maximize L(’(\i';n) over @2. As a first step,

. we maximize L(-;n) over eu for every 1 = 1,2,°++,k-1. We observe that r'
N i n :E::\f

pax L(ésn) = C(n) + pax a I pj(e;n) e

- - RGN
3 6e0,, ge0,, 3=1 N
- Y
" p k-1 1-1 o

= C(n) + ia g (1 - GZn(x/G)) (1 - GZn(x)) an(x) dx,

s
-‘.
-'t~‘
.-..-‘
»t et
«®
* N e
a " .
e
LSRR
..‘I
..I “.
s
S
-.‘._
L
B

by Lemma 3.10.
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The maximum of L(B;n) over 0 has another equivalent expression. It is

2,k-1

a

r vt
v

given by

‘-‘.",'- . .;'_. LA :"':: -

)

A

o k-1 oy
pax L(8;n) = C(n) + a max I p.(6;3n)
90, 1y 0e0, ) =1

e
>

P©r

AR

= C(n) + a pax 1 - pk(g;n))
eeez’k_l

’
r 't
.

L

i

~
'S
-

L:f A

= C@ + all - F (=6, () g (x) dx)
. )

2", The following chain of inequalities can easily be checked to be true.

£ =6y (/) g, 0 dx < sa- G, (x/) 2 (1 = 6, (1)) g, (%) dx

P k-3 2
Q- Gzn(x/G)) a - GZn(X)) gzn(x) dx < eseeccse

= T
° _
< FQ-c /&) (-6 N2 g (x) dx. E.‘i
-— 0 2n 2n gzn B
Since 021, i=1,2,-¢0,k-1 1is a partition of 92, we have .

ax L(a;n) =  max {C(n) + 1ia ; (1 -¢ (x/cS))k-i (1-¢6 (x))i-1 g, (x) c[i;
Ep o, 1<i<k-1 0 2n 2 2n

= o) + a(k-1) [ (1 -G, /&) - 6, N 7 g, (x) ax
0

ot k-1
= C(n) + a(l - g 1 - Gzn(éx)) an(x) dx) , by Step 1°. S

This completes the proof. AL
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The above theorem explicitly determines the maximum of Lt 3’;':1) over l' 7
AT
all § in 0. This maximum is the same as the maximum of L('é';n) over all § :-Z{:
- T
o In @, L _1° the so called '"Least Favourable Choice Set"”. In order to find the ';-.\':
N L D) \
. : : N
- minimax sample size, we have to solve the following problem. E"““
N
S
Objective. For a givemn 0 < § <1, minimize )
c) + all- 1 =6, (@l g () dn
0 2n 2n
- over all n > 1.
We obtain the minimax sample sizes for ¢ = 0.5, 0.6, 0.7, 0.8,0.9;
: k=2,3,4,5; a= 200; ¢, = o, ¢, = 1 and d =1 by solving the above problem.
These sample sizes are tabulated below.
Table 4 : Minimax sample sizes under Penalty function of Type 4
No. of 8 0.5 0.6 0.7 0.8
populations -
Minimax Minimax | Minimax Minimax| Minimax Minimax [Minimax Minimax
k sample 1loss sample loss sample loss sample loss ¥
size size size size e
- 2 10 32.95 12 45.80 12 62.8 | 8  82.07 el
3 11 53.14 12 73.34 11 98.20 6  120.55 -
: 4 11 71.68 11 97.23 8 124.99 | 3  143.26 '
- 5 10  88.89 10  118.10 6 144.74 | 2 157.26 s
P . '..:-".1
; Y o
- Minimax Minimax i
.‘: sample loss ;.‘_::;_:
size
. .' -\ Q
Ny
: e -
- 3 2 131.87 )
- 4 2 151.46 R
[

= 5 2 167.50
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4. Asymptotic minimax value of n

e e

In Section 3, we obtained minimax sample sizes under penalty

function of type 2 and the relevant loss function involved is

L(rim) = kn + 1000 (log r) (1 - f (1 = G, (x/e)* g, (x) dx)
0

for r>1 and a > 1. (4.3)
Using Mehtod 2, in order to find the minimax sample size for a given k,
we have tabulated the values of L(r;n) for r = 1.0, 1.1,-“,1:2’k and
n=1,2,+++,20. Fortunately, the minimax sample size n was one of the
o numbers 2,3,¢°+,20. It could happen that the minimax sample size n is
- a number beyond 20, The constant 1000 appearing in the above loss function
| played a crucial role in keeping minimax sample sizes to a moderate level.

If we replace 1000 by a larger number, minimax sample sizes do increase.

(A
FEIRNU N R

To illustrate this point, we worked out the minimax sample sizes under the

.
, 3

loss function

5 L(r;n) = kn + 1200 (log r) (1 -/ (1 - Gzn(x/r:))k-1 8y, (¥) dx),
0
. for r>1 and n>1, (4.2)

and these are tabulated below.

Table 5 : Minimax sample sizes under the loss functions (4.1) and (4.2)

5 No. of populations Minimax sample size Minimax sample size
under (4.1) under (4.2)

15 18
16 16
18 18
14 19

(C I NV
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If we increase the value of c,, we may need to compute the value 4

of L(r;n) for n > 20. In this section, we approximate the integral involved e
'_L::_ d

in L(r;n) by an integral involving the standard normal distribution for ;t
large values of n. The integral in focus is ?‘
- k-1 b

é (1 - GZn(x/r)) 92n(x) dx . (4.3) ;Eﬁ
The above integral can be obtained probabilistically as follows. Let Y, Y,, =4
k.

voe, Yk be k independent identically distributed random variables each having el

chi-square distribution with 2n degrees of freedom. Then :l:

Pk(r;n) = Pr(Yk < rYj, j=1,2,s00,k-1)

s 7 k-1
= 6 (1 - Gy (x/7))7 " gpq(x) dx. i
Employing Wilson-Hilferty's transformation, we define E;;
(v,/2m)3 (1 - y9n) ]
i = T s 1 = 1,2,000,k. -
(1/9n) S
-

See Kendall and Stuart (1977, p.398-399). If n is large, each Zi is normally o

distributed with mean zero and variance unity. We note that
Y, <rY. ifandonly if 2, < r/3z, +a where -
k<Y y k it E .
g -ymetP.y
a . = 1 .

? (1/9n) -
Consequently, E::\
P lrsn) = Pr(Y, < My, J = 1,2,000,k-1) = té?
. 1/3 e R

Pr(Zk <r Zj + a J=1,2,00-,k-1) Eg

..........
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where ¢(:) 1is the distribution function of the standard normal probability

model. Thus for large n, the loss function works out to be

L(rsn) 2 kn + cz(:'!og'«n)('l'--";(-1-¢(f-—-1;-'3"—r))k'1 (29) 7} exp(- x/2) dx)

RN, AN PR a2 . T P

) r
. for r>1 and n > 1,

Iiz The integral involved in the loss function under penalty function
i of type 4 1is given by

Z (1 - Gy (ex))*L g, (x) x.

i As before, if n 1is large, this integral is approximately equal to

7 1= o634 b, DT (20)F expl- x2) ex,

1/3
= L -YM1/8) "~ - 1) the 1055 function, if n is large,

M P LI Y S
ERLT

where b
5 S (1/9n)}
under penalty function of type 4 1is given by
K = 1/3 k-1, y-4 2
: Llrsn) = C(n) +a(l - 7 (1 - o(s"x - by )77 (2r)"% exp(- x%/2) dx),
:;':: r>1 and n> 1.
!
X
".-\ *deh
#\
g




REFERENCES

i
.
:

Bechchofer, R.E. (1954). A single sample multiple decision procedure for rank-
;gg Tgans of normal populations with known variances, Ann. Maih. Statist.,
v 9 -39.

Fox, P.D. and Kraemer, H.C. (1971). A probability model for the remission rate
of discharged psychiatric patients. Management Sci., 17, B694-8699.

Gupta, S.S. (1956). On a decision rule for a problem in ranking means, Ph.D.
Thesis (Mimeo. Ser. No. 150), Inst. of Statist., University of North Carolina,
Chapel Hill.

Al TR MR RS LR

Kendall, M.G. and Stuart, A, (1977). The Advanced Theory of Statistics, Vol. I,
Charles Griffin and Company, Ltd., London, fourth edition.

l Koutrouvelis, I.A. (1981). Large sample quantile estimation in Pareto laws,
Comm. Statis. Theory Methods, A10{(2), 189-201.

0fosu, J.B. (1972). A minimax procedure for selecting the population with the
- largest (smallest) scale parameter, Calcutta Statist. Assoc. Bull., 21,
i 143-154. Errata 22 (1973), 129.

pareto, V. (1927). Manuel d'economie politique, Giard, Paris.

Somerville, P.N. (1954). Some problems of optimum sampling, Biometrika, 41,
420-429,

Steindl, J. (1965). Random processes and the growth of firms, Hafner, New York.

Y NGRS

Wingo, D.R. (1979). Estimation in a Pareto distribution: theory and computa-
tion. IEEE Trans. Rel. R28, 35-37.

a

SRS SUAWPRUEREAC ] . AR

e _'n..‘l _‘1-..'\'. .‘. .'- :.
~y

e e e T e e T T T
r. 1.. ot -\'. 7, ...'Aa. .. ',"..' At
B T i S

A
TR 2




roT e e

et e . e
a7, w7 P e g V. ¥ e & "
Y e, _',-'_\l :).‘f,.n-..:..n'::: '..;:'.‘.;Q:J" .

AR AR RS AC AR L TRt AR 2l |

—Unclassified
SECURITY CLASSIFICATION OQF TriS PAGE (When llete kiutarey)
READ INSTRUCTIONS

1. RE - - 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (enu Subiiste) S. TYPE QF REPOAT & PERIQD COVERED

Selecting the best population: A decisign Technical - November

theoretic approach: The case of §. PERFORNING ORG. REPORT NUMBER
Pareto distribution

=4]
8. CONTRACT OR GAANT NUMBER(s)

7. AUTHOR(s)

N. Dailami, K. Subramanyam and M. F49620-85-C~0008

Bhaskara Rao

10, T.P T T
S. PERFORMING ORGANIZATION NAME ANO ADORESS [} ::22".‘30%";‘35:‘7 w:o.‘fgr ASK
Center for Multivariate Analysis GuCIw

3¢ A5
B%?vgggg §rg¥ g?%%sburgh.?ittsburgh. PA 43

. CONTAOLLING CFFICE NAME AND ADDRESS 13. REPQRY OATE

Air Force Office of Scientific Research November 1985

Department of the Air Force 3. NUMBER OF PAGES

Rg 20332 32
4 MONITORING ACENCY NAME & AQCGRESS(!H ailterent lrom Contreiting Othice) | 15. SECURITY CLASS. (of thie report)

Unclassified

ey
1

. DECL ASSIFICATION/ GOWNGRADING
SCHEDULE

6. OISTRIBUTION STATEMER T (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBYTION STATEMENT (of ihe sbelract entered in Bleck 20, It dillerent (tom Rapert)

18. SUPPLEIMENTARY NOTES

y &y Sieck number)

19 xC€Y WOAQS (Continue on reverse side il y and |

Cost of sampling, minimax criterion, Pareto distribution,
penalty function, selection problem.

20 AGSTAACT (Continue en reverse sige |1 necessery end (deniily by Bloch number)

A decision theoretic approach is followed in selecting the
best of k Pareto populations taking into account the cost of
ampling and penalties for wrong decisions. Minimax sample sizes
re determined under various types of penalty functions.

Vian s 1473 Unclassified

SECURITY CLASSIFICATION OF ThiS PAGE (When Data Entersu)

e e e T T e e T T e e T St et et
e T Tt e N e e et e
e e PP W I S AR S T I A, X YE S PRI

HEAMA-AE S Arh ey Al Sad 4o}




Lot

o N O W NP

—
L 4

‘.‘-:,‘-:

S

o

£,
aa

- G N e —— - e em— . e e e VW WS Y € 6V Y SR .G ., N, ... s v UEEET - v o 4 MR TR e s a SRR Y Y Y C SR Sy v ]



